HDAC6抑制剂tubastatin A缓解顺铂诱导的认知损伤及机制

曹璐阳, 苏彦威, 赵武杰, 房博杰, 王冬梅

中国药学杂志 ›› 2021, Vol. 56 ›› Issue (9) : 731-737.

PDF(5745 KB)
PDF(5745 KB)
中国药学杂志 ›› 2021, Vol. 56 ›› Issue (9) : 731-737. DOI: 10.11669/cpj.2021.09.007
论著

HDAC6抑制剂tubastatin A缓解顺铂诱导的认知损伤及机制

  • 曹璐阳, 苏彦威, 赵武杰, 房博杰, 王冬梅*
作者信息 +

HDAC6 Inhibitor Tubastatin A Alleviates Cisplatin-Induced Cognitive Impairment in Mice

  • CAO Lu-yang, SU Yan-wei, ZHAO Wu-jie, FANG Bo-jie, WANG Dong-mei*
Author information +
文章历史 +

摘要

目的 研究组蛋白去乙酰化酶6(HDAC6)抑制剂tubastatin A对顺铂诱导的认知障碍的保护作用及其机制。方法 雄性C57BL/6小鼠分为正常对照组、模型组、模型+tubastatin A组和tubastatin A对照组。模型组以10 d为1个周期(第1~5天,每天1次ip给予顺铂2.3 mg·kg-1,第6~10天不注射),连续进行3个周期构建化疗相关的脑损伤模型。模型+tubastatin A组在每次顺铂注射前1 h ip 给予tubastatin A 25 mg·kg-1进行治疗。采用Morris水迷宫实验检测学习记忆功能;免疫荧光观察线粒体外膜转位酶20(TOMM20)在海马CA1区神经元胞体与辐射层的分布;生化法检测脑组织线粒体细胞色素c氧化酶(Cyto C)活性、ATP合成量和线粒体膜电位(MMP);Western印迹法检测海马组蛋白脱乙酰酶6(HDAC6)乙酰化底物α微管蛋白乙酰化水平;免疫荧光检测突触前标记物突触蛋白-1(synapsin-1)和突触后标记物突触后致密蛋白95(PSD95)的表达。结果 与对照组相比,模型组小鼠靶象限滞留时间明显减少(P<0.01),TOMM20聚集在海马CA1区神经元胞体,脑组织线粒体功能损伤,α微管蛋白乙酰化水平降低,synapsin-1和PSD95荧光强度均减少;与模型组相比,模型+tubastatin A组小鼠Morris水迷宫靶象限滞留时间显著增多(P<0.05),TOMM20均匀分布在海马CA1区神经元胞体与辐射层,脑组织线粒体Cyto C活性增加了35.2%(P<0.05),ATP合成量增加了58.6%(P<0.01),MMP增加了17.1%(P<0.05),α微管蛋白乙酰化水平升高(P<0.01),synapsin-1和PSD95荧光强度均增加(P<0.05)。结论 Tubastatin A对照组与正常对照组相比,神经行为学、线粒体功能和突触蛋白均没有显著性差异。Tubastatin A治疗通过增加海马组织α微管蛋白乙酰化水平,缓解海马线粒体转运障碍、线粒体失功能和突触损伤,从而改善顺铂诱导的小鼠学习记忆功能损伤。

Abstract

OBJECTIVE To investigate the neuroprotective effects of HDAC6 inhibitor tubastatin A on cisplatin-induced cognitive impairment in mice. METHODS Male C57BL/6 mice were randomly assigned into normal control group, model group, model+tubastatin A group, and tubastatin A group. The mice model of chemo brain was established by intraperitoneal injections with cisplatin for 3 cycles consisting of 5 daily injections followed by a 5-day rest with no injection. Tubastatin A (25 mg·kg-1) was administered intraperitoneally 1 h before cisplatin injection. The ability of learning and memory was assessed by Morris water maze. The mitochondrial axonal transport was analyzed with immunofluorescence, using TOMM20, a mitochondrial marker protein. The brain mitochondrial function, including cytochrome c oxidase activity, mitochondrial ATP production, and mitochondrial membrane potential (MMP) measurements, were measured by biochemical assay. The α-tubulin acetylation level was detected by Western blot. The levels of pre-synaptic marker synapsin-1 and post-synaptic marker PSD95 were examined by immunofluorescence. RESULTS Compared with the control group, the retention of target quadrant was significantly reduced in the cisplatin group. Cisplatin-treated mice exhibited a significantly impaired mitochondrial function as indicated by decreased cytochrome C oxidase activity, ATP production, and MMP, and mitochondrial transport deficits as evidenced by an obvious increase in the ratio of TOMM20 immunoreactivity in the soma to that in the stratum radiatum in the brain as compared with the controls. The levels of synapsin-1 and PSD95 in CA1 region of the hippocampus were remarkably decreased in cisplatin-treated mice. However, tubastatin A treatment significantly increased the retention of target quadrant, attenuated mitochondrial transport deficits and mitochondrial dysfunction, increased the α-tubulin acetylation level, and rescued the synaptic injury in brains of cisplatin group. CONCLUSION No significant difference is observed in the cognition, mitochondrial function and synaptic proteins between the normal control group and tubastatin A group. Tubastatin A can alleviate mitochondrial transport disorder, mitochondrial dysfunction, and cisplatin-elicited decrease in synaptic proteins by increasing the level of a-tubulin acetylation, thereby improving cisplatin-induced learning and memory impairment in mice.

关键词

顺铂 / 认知损伤 / tubastatin A / 线粒体 / 突触功能

Key words

cisplatin / cognitive impairment / tubastatin A / mitochondria / synaptic function

引用本文

导出引用
曹璐阳, 苏彦威, 赵武杰, 房博杰, 王冬梅. HDAC6抑制剂tubastatin A缓解顺铂诱导的认知损伤及机制[J]. 中国药学杂志, 2021, 56(9): 731-737 https://doi.org/10.11669/cpj.2021.09.007
CAO Lu-yang, SU Yan-wei, ZHAO Wu-jie, FANG Bo-jie, WANG Dong-mei. HDAC6 Inhibitor Tubastatin A Alleviates Cisplatin-Induced Cognitive Impairment in Mice[J]. Chinese Pharmaceutical Journal, 2021, 56(9): 731-737 https://doi.org/10.11669/cpj.2021.09.007
中图分类号: R965   

参考文献

[1] AHLES T A, SAYKIN A J. Candidate mechanisms for chemotherapy-induced cognitive changes[J]. Nat Rev Cancer, 2007, 7(3): 192-201.
[2] KOPPEN C, REIFSCHNEIDER O, CASTANHEIRA I, et al. Quantitative imaging of platinum based on laser ablation-inductively coupled plasma-mass spectrometry to investigate toxic side effects of cisplatin[J]. Metallomics, 2015, 7(12): 1595-1603.
[3] CORREA D D, HESS L M. Cognitive function and quality of life in ovarian cancer[J]. Gynecol Oncol, 2012, 124(3): 404-409.
[4] GANA S A, RAMADOSS M, MAHADEVAN M. Histone deacetylase (HDAC) inhibitors-emerging roles in neuronal memory, learning, synaptic plasticity and neural regeneration[J]. Curr Neuropharmacol, 2016, 14(1): 55-71.
[5] ZHANG L, LIU C, WU J, et al. Tubastatin A/ACY-1215 improves cognition in Alzheimer's disease transgenic mice[J]. J Alzheimers Dis, 2014, 41(4): 1193-1205.
[6] DOMPIERRE J P, GODIN J D, CHARRIN B C, et al. Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington's disease by increasing tubulin acetylation[J]. J Neurosci, 2007, 27(13): 3571-3583.
[7] WANG Z, LENG Y, WANG J, et al. Tubastatin A, an HDAC6 inhibitor, alleviates stroke-induced brain infarction and functional deficits: potential roles of alpha-tubulin acetylation and FGF-21 up-regulation[J]. Sci Rep UK, 2016, 6: 19626.
[8] CHIU G S, MAJ M A, RIZVI S, et al. Pifithrin-mu prevents cisplatin-induced chemobrain by preserving neuronal mitochondrial function[J]. Cancer Res, 2017, 77(3): 742-752.
[9] ZHOU W, KAVELAARS A, HEIJNEN C J. Metformin prevents cisplatin-induced cognitive impairment and brain damage in mice[J]. PLoS One, 2016, 11(3): e0151890.
[10] GOVINDARAJAN N, RAO P, BURKHARDT S, et al. Reducing HDAC6 ameliorates cognitive deficits in a mouse model for Alzheimer's disease[J]. Embo Mol Med, 2013, 5(1): 52-63.
[11] KAY K R, SMITH C,WRIGHT A K, et al. Studying synapses in human brain with array tomography and electron microscopy[J]. Nat Protoc, 2013, 8(7): 1366-1380.
[12] DZAGNIDE A, KATSARAVA Z, MAKHALOVA J, et al. Repair capacity for platinum-DNA adducts determines the severity of cisplatin-induced peripheral neuropathy[J]. J Neurosci, 2007, 27(35): 9451-9457.
[13] GIURGIOVICH A J, DIWAN B A, OLIVERO O A, et al. Elevated mitochondrial cisplatin-DNA adduct levels in rat tissues after transplacental cisplatin exposure[J]. Carcinogenesis, 1997, 18(1): 93-96.
[14] YANG Z, SCHUMAKER L M, EGORIN M J, et al. Cisplatin preferentially binds mitochondrial DNA and voltage-dependent anion channel protein in the mitochondrial membrane of head and neck squamous cell carcinoma: possible role in apoptosis[J]. Clin Cancer Res, 2006, 12(19): 5817-5825.
[15] MARTINS N M, SANTOS N A, CURTI C, et al. Cisplatin induces mitochondrial oxidative stress with resultant energetic metabolism impairment, membrane rigidification and apoptosis in rat liver[J]. J Appl Toxicol, 2008, 28 (3): 337-344.
[16] ZSENGELLER Z K, ELLEZIAN L, BROWN D, et al. Cisplatin nephrotoxicity involves mitochondrial injury with impaired tubular mitochondrial enzyme activity[J]. J Histoche Cytochem, 2012, 60(7): 521-529.
[17] PODRATZ J L, KNIGHT A M, TA L E, et al. Cisplatin induced mitochondrial DNA damage in dorsal root ganglion neurons[J]. Neurobiol Dis, 2011, 41(3): 661-668.
[18] LOMELI N, DI K, CZERNIAWSKI J, et al. Cisplatin-induced mitochondrial dysfunction is associated with impaired cognitive function in rats[J]. Free Radical Bio Med, 2017, 102: 274-286.
[19] HUBBERT C, GUARIDIOLA A, SHAO R, et al. HDAC6 is a microtubule-associated deacetylase[J]. Nature, 2002, 417(6887): 455-458.
[20] GUO W, NAUJOCK M, FUMAGALLI L, et al. HDAC6 inhibition reverses axonal transport defects in motor neurons derived from FUS-ALS patients[J]. Nat Commun, 2017, 8(1): 861.
[21] GUEDES-DIAS P, SOARES T R, PINHO B R, et al. HDAC6 inhibition induces mitochondrial fusion, autophagic flux and reduces diffuse mutant huntingtin in striatal neurons[J]. BBA, 2015, 1852 (11): 2484-2493.
[22] HOLLENBECK P J. The axonal transport of mitochondria[J]. J Cell Sci, 2005, 118 (Pt 23): 5411-5419.
[23] LIU X A, RIZZO V, PUTHANVEETTIL S V. Pathologies of axonal transport in neurodegenerative diseases[J]. Transl Neurosci, 2012, 3 (4): 355-372.

基金

国家自然科学基金项目资助(U1804174,81601225);河南省重点研发与推广专项(科技攻关)项目资助(192102310081);河南省高校科技创新人才支持计划资助(20HASTIT044);河南科技大学大学生研究训练计划项目资助(SRTP)(2019314)
PDF(5745 KB)

Accesses

Citation

Detail

段落导航
相关文章

/